代数的内部
数学の一分野である函数解析学において、ベクトル空間の部分集合の代数的内部(だいすうてきないぶ、英: algebraic interior)あるいは動径核(radial kernel)は、集合の内部を細緻化する概念である。与えられた集合の代数的内部とは、その集合に属する点であって、その点を原点としてもとの集合が併呑となるような点、すなわちその集合の動径点[1]の全体である。代数的内部の元は、しばしば(代数的)内点(internal points)と呼ばれる[2][3]。
具体的に、 が線型空間であるとき、 の代数的内部は次で定義される。
一般に であることに注意されたい。しかし が凸集合であるなら、 である。また が凸集合であるときは、 に対して が成立する。
例
編集が で与えられるなら、 である。しかし、 および である。
性質
編集であるなら、次が成り立つ。
内部との関係
編集を線型位相空間とし、 を内部作用素とし、 とする。このとき次が成り立つ:
脚注
編集- ^ a b Jaschke, Stefan; Kuchler, Uwe (2000). Coherent Risk Measures, Valuation Bounds, and ( )-Portfolio Optimization.
- ^ a b Aliprantis, C.D.; Border, K.C. (2007). Infinite Dimensional Analysis: A Hitchhiker's Guide (3 ed.). Springer. pp. 199–200. doi:10.1007/3-540-29587-9. ISBN 978-3-540-32696-0
- ^ John Cook (May 21, 1988). “Separation of Convex Sets in Linear Topological Spaces” (pdf). May 26, 2015閲覧。
- ^ Nikolaĭ Kapitonovich Nikolʹskiĭ (1992). Functional analysis I: linear functional analysis. Springer. ISBN 978-3-540-50584-6
- ^ a b c Zălinescu, C. (2002). Convex analysis in general vector spaces. River Edge, NJ,: World Scientific Publishing Co., Inc. pp. 2–3. ISBN 981-238-067-1. MR1921556
- ^ Shmuel Kantorovitz (2003). Introduction to Modern Analysis. Oxford University Press. p. 134. ISBN 9780198526568
- ^ Bonnans, J. Frederic; Shapiro, Alexander (2000), Perturbation Analysis of Optimization Problems, Springer series in operations research, Springer, Remark 2.73, p. 56, ISBN 9780387987057.