ジャン・バティスト・ジョゼフ・フーリエ男爵(Jean Baptiste Joseph Fourier, Baron de、1768年3月21日 - 1830年5月16日)は、フランスの数学者・物理学者。 固体内での熱伝導に関する研究から熱伝導方程式(フーリエの方程式)を導き、これを解くためにフーリエ解析と呼ばれる理論を展開した。フーリエ解析は複雑な周期関数をより簡単に記述することができるため、音や光といった波動の研究に広く用いられ、現在調和解析という数学の一分野を形成している。 このほか、方程式論や方程式の数値解法の研究があるほか、次元解析の創始者と見なされることもある。また統計局に勤務した経験から、確率論や誤差論の研究も行った。 ……もっと読む |
計算可能性理論(computability theory)では、チューリングマシンなどの計算模型でいかなる計算問題が解けるか、またより抽象的に、計算可能な問題のクラスがいかなる構造をもっているかを調べる、計算理論や数学の一分野である。計算可能性は計算複雑性の特殊なものともいえるが、ふつう複雑性理論といえば計算可能関数のうち計算資源を制限して解ける問題を対象とするのに対し、計算可能性理論は、計算可能関数またはより大きな問題クラスを主に扱う。計算機科学の中心的課題の1つは、コンピュータを使って解ける問題の範囲を理解することでコンピュータの限界に対処することである。コンピュータは無限の計算能力を持つと思われがちだし、十分な時間さえ与えられればどんな問題も解けると想像することは易しい。しかし、多大な計算資源を与えられたとしても、見たところ単純な問題を解くことでコンピュータの能力の限界を明確に示すことは可能である。 ……もっと読む |
数学史(history of mathematics)とは、数学の歴史のこと。第一には、数学上の発見の起源についての研究であり、副次的な興味として、過去の数学においてどのような手法が一般的であったかや、どのような記号が使われたかなども調べられている。数学史は、文明が起こる以前に遡って説明することができる。そこには、狩猟や採集、また生活を維持するために必要だった計数の概念などが含まれる。また、文明成立後は各地で様々な水準の数学の発展が興るが、やがて文明の交流によって現代の数学に繋がっていく。有史より遥か古い時代の線画にも、数学の知識や、天体観測に基づいた測時法があったことを示すものがある。古生物学者による例では、南アフリカの砂岩洞窟の中に、幾何学的模様で彩られた線刻画が発見され、紀元前7万年頃のものと推定されている。他にも、アフリカやフランスで発見されている紀元前3万5千~2万年頃の先史時代遺物の中に、時間を表現しようとした形跡がある。古代、記数法は、女性が生理の日を記録するために必要とされたという証拠がある。また、28~30のキズがついた石や骨が、複数見つかるという事例がある。 ……もっと読む |
セル・オートマトン(英: cellular automaton、略称:CA)とは、格子状のセルと単純な規則による、離散的計算モデルである。計算可能性理論、数学、物理学、複雑適応系、数理生物学、微小構造モデリングなどの研究で利用される。非常に単純化されたモデルであるが、生命現象、結晶の成長、乱流といった複雑な自然現象を模した、驚くほどに豊かな結果を与えてくれる。正確な発音に近いセルラ・オートマトンとも呼ばれることがある。セルは「細胞」「小部屋」、セルラは「細胞状の」、オートマトンは「からくり」「自動機械」を意味する。他に「セル空間」「埋め尽くしオートマトン」「homogeneous structure」「tessellation structure」「iterative array」といった呼称もある。有限種類の(多くは2から数十種類の)状態を持つセル(細胞のような単位)によってセル・オートマトンは構成され、離散的な時間で個々のセルの状態が変化する。 ……もっと読む |
ゼロ除算(division by zero)は、0 で除す割り算のことである。このような除算は除される数を a とするならば、形式上は a⁄0 と書くことができるが、数学において、この式と何らかの意味のある値とが結び付けられるかどうかは、数学的な設定にまったく依存している話である。少なくとも通常の実数の体系とその算術においては、意味のある式ではない。コンピュータなど計算機においても、ゼロ除算に対するふるまいは様々である。たとえば浮動小数点数の扱いに関する標準であるIEEE 754では、数とは異なる無限大を表現するものが結果となる。他には、例外が起きてプログラムの中断を引き起こすかもしれないし、例えばナイーブに取尽し法を実行しようとしたなら無限ループに陥るか、なんらかの最大値のようなものが結果となるかもしれない。 ……もっと読む |
三角関数(英: trigonometric function)とは、平面三角法における、角の大きさと線分の長さの関係を記述する関数の族および、それらを拡張して得られる関数の総称である。三角関数という呼び名は三角法に由来するもので、後述する単位円を用いた定義に由来する呼び名として、円関数(えんかんすう、英: circular function)と呼ばれることがある。 三角関数には の 6 つがあり、それぞれ正弦 (sine)、正割 (secant)、正接 (tangent)、余弦 (cosine)、余割 (cosecant)、余接(cotangent) を意味する。特に sin, cos は幾何学的にも解析学的にも良い性質を持っているので、様々な分野で用いられる。例えば波や電気信号などは正弦関数と余弦関数を組み合わせることで表現することができる。この事実はフーリエ級数およびフーリエ変換の理論として知られ、音声などの信号の合成や解析の手段として利用されている。他にもベクトルの外積や内積は正弦関数および余弦関数を用いて表すことができ、ベクトルを図形に対応づけることができる。初等的には、三角関数は実数を変数とする一変数関数として定義される。 ……もっと読む |
対数螺旋(たいすうらせん、英: logarithmic spiral)とは、自然界によく見られる螺旋の一種である。等角螺旋(とうかくらせん、英: equiangular spiral)、ベルヌーイの螺旋ともいい、「螺旋」の部分は螺線、渦巻線(うずまきせん)、匝線(そうせん)などとも書く。ヤコブ・ベルヌーイ(ジャック・ベルヌーイ)は、17世紀のスイスの数学者。 極座標表示 (r, θ) で
と表される平面曲線を対数螺旋という。ここに、e はネイピア数、a, b は固定された実数である。r が原点からの距離を表すため、a は正でなければならないが、b は正、負のどちらでも構わない。正の場合は中心から離れる際に左曲がりである螺旋になり、負の場合は右曲がりの螺旋になる。裏返すことによって左曲がりを右曲がりにできるため、b > 0 に限った定義をすることもある。定義式において形式的に b = 0 とすると、半径 a の円となる。 ……もっと読む |
数学において、小数点以下の各位にすべて9が並ぶ循環(十進)小数 0.999... が実数を表すものならば、それはちょうど 1 に等しい。循環小数としての 0.999... は循環節の明確化のために などとも記される 数は広く十進記数法で表され、任意の実数はその十進小数展開という数字の羅列によって捉えることが行われる。この枠組みにおいて、「循環小数 0.999...」によって「表される実数」を考えることができるが、これは寸分違わずちょうど 1 に等しい。つまり、"0.999..." と"1" という別の文字列は同じ数に対応する。この証明は、どの程度数学的に厳密であるかということまで含めて、複数の方法で説明することができる。 ……もっと読む |
エジプト式分数(エジプトしきぶんすう、単にエジプト分数とも、英: Egyptian fraction)とは、いくつかの異なる単位分数(分子が 1 の分数)の和、あるいは分数をそのように表す方式を意味する。例えば、通常 5/6 で表す分数を 1/2 + 1/3 などと表す。任意の正の有理数はこの形式で表すことができるが、表し方は一意ではない。この形式で分数を扱う方法は、古くは古代エジプトのリンド・パピルスに見られ、ヨーロッパでは中世まで広く用いられた。現代でも数論の分野において、エジプト式分数に端を発する数学上の未解決問題が多く残されている。例えば 2/5 は単位分数の和として 1/5 + 1/5 と表せるが、エジプト式分数では同じ単位分数を繰り返し用いることはせず、2/5 = 1/3 + 1/15 のように表す。 ……もっと読む |
ロジスティック写像(ロジスティックしゃぞう、英語: logistic map)とは、xn+1 = axn(1 − xn) という2次関数の差分方程式(漸化式)で定められた離散力学系である。ロジスティックマップや離散型ロジスティック方程式(英語: discrete logistic equation)とも呼ばれる。単純な2次関数の式でありながら、驚くような複雑な振る舞いを生み出すことで知られる。 ロジスティック写像の a はパラメータと呼ばれる定数、x が変数で、適当に a の値を決め、最初の x0 を決めて計算すると、x0, x1, x2, … という数列が得られる。この数列を力学系分野では軌道と呼び、軌道は a にどのような値を与えるかによって変化する。パラメータ a を変化させると、ロジスティック写像の軌道は、一つの値へ落ち着いたり、いくつかの値を周期的に繰り返したり、カオスと呼ばれる非周期的変動を示したりと様々に変化する。 ……もっと読む |