HSPA1B(heat shock protein family A (Hsp70) member 1B)またはHSP70-2Hsp70ファミリーのタンパク質であり、イントロンを持たないHSPA1B遺伝子にコードされる[5]HSPA1B遺伝子は6番染色体英語版短腕のMHCクラスIII英語版遺伝子領域内に、2つのパラログ遺伝子HSPA1AHSPA1Lとともにクラスターとして存在する[6][7][8]HSPA1A遺伝子とHSPA1B遺伝子のDNA配列に存在するわずかな差異は、ほぼ同義置換3' UTRに位置するものであるため、両遺伝子からはほぼ同一なタンパク質HSPA1AとHSPA1Bが産生される[8]。同領域に位置する3つ目のパラログであるHSPA1Lは、他の2つと90%が相同である[7]

HSPA1B
PDBに登録されている構造
PDBオルソログ検索: RCSB PDBe PDBj
PDBのIDコード一覧

1HJO, 1S3X, 1XQS, 2E88, 2E8A, 2LMG, 3A8Y, 3ATU, 3ATV, 3AY9, 3D2E, 3D2F, 3JXU, 3LOF, 4IO8, 4J8F, 4PO2, 4WV5, 4WV7, 5AR0, 5AQZ, 3Q49,%%s3D2E

識別子
記号HSPA1B, HSP70-1B, HSP70-2, HSP70.2, heat shock protein family A (Hsp70) member 1B, HSX70, HSPA1, HSP70-1, HSP72, HSP70.1
外部IDOMIM: 603012 MGI: 96244 HomoloGene: 74294 GeneCards: HSPA1B
遺伝子の位置 (ヒト)
6番染色体 (ヒト)
染色体6番染色体 (ヒト)[1]
6番染色体 (ヒト)
HSPA1B遺伝子の位置
HSPA1B遺伝子の位置
バンドデータ無し開始点31,827,738 bp[1]
終点31,830,254 bp[1]
遺伝子の位置 (マウス)
17番染色体 (マウス)
染色体17番染色体 (マウス)[2]
17番染色体 (マウス)
HSPA1B遺伝子の位置
HSPA1B遺伝子の位置
バンドデータ無し開始点35,188,166 bp[2]
終点35,191,132 bp[2]
遺伝子オントロジー
分子機能 ヌクレオチド結合
熱ショックタンパク質結合
受容体結合
C3HC4-type RING finger domain binding
ATPアーゼ活性
virus receptor activity
ヒストンデアセチラーゼ結合
protein folding chaperone activity
G protein-coupled receptor binding
ATP binding
酵素結合
ubiquitin protein ligase binding
血漿タンパク結合
transcription corepressor activity
cadherin binding
RNA結合
denatured protein binding
protein N-terminus binding
unfolded protein binding
disordered domain specific binding
misfolded protein binding
細胞の構成要素 blood microparticle
中心小体
核質
封入体
焦点接着
perinuclear region of cytoplasm
ubiquitin ligase complex
細胞質基質
細胞外領域
ficolin-1-rich granule lumen
中心体
微小管形成中心
細胞骨格
細胞核
細胞質
ミトコンドリア
小胞体
アグリソーム
nuclear speck
小胞
エキソソーム
COP9シグナロソーム
高分子複合体
リボ核タンパク質
生物学的プロセス cellular response to oxidative stress
regulation of mRNA stability
negative regulation of endoplasmic reticulum stress-induced intrinsic apoptotic signaling pathway
positive regulation of NF-kappaB transcription factor activity
negative regulation of mitochondrial outer membrane permeabilization involved in apoptotic signaling pathway
cellular heat acclimation
negative regulation of inclusion body assembly
positive regulation of tumor necrosis factor-mediated signaling pathway
negative regulation of cell death
positive regulation of gene expression
ウイルス侵入
regulation of cell death
ATP metabolic process
negative regulation of protein ubiquitination
negative regulation of extrinsic apoptotic signaling pathway in absence of ligand
positive regulation of endoribonuclease activity
positive regulation of nucleotide-binding oligomerization domain containing 2 signaling pathway
regulation of protein ubiquitination
positive regulation of interleukin-8 production
regulation of cellular response to heat
cellular response to heat
negative regulation of transforming growth factor beta receptor signaling pathway
positive regulation of proteasomal ubiquitin-dependent protein catabolic process
好中球脱顆粒
negative regulation of transcription from RNA polymerase II promoter in response to stress
protein refolding
positive regulation of microtubule nucleation
regulation of mitotic spindle assembly
mRNA異化プロセス
response to unfolded protein
negative regulation of cell population proliferation
negative regulation of cell growth
negative regulation of apoptotic process
タンパク質の安定化
chaperone-mediated protein complex assembly
positive regulation of RNA splicing
Unfolded Protein Response
positive regulation of erythrocyte differentiation
chaperone cofactor-dependent protein refolding
lysosomal transport
response to heat
telomere maintenance
DNA修復
出典:Amigo / QuickGO
オルソログ
ヒトマウス
Entrez
Ensembl
ENSG00000232804
ENSG00000224501
ENSG00000212866
ENSG00000204388
ENSG00000231555
UniProt
RefSeq
(mRNA)

NM_005346

NM_010479

RefSeq
(タンパク質)

NP_005337
NP_005336
NP_005336
NP_005336.3
NP_005337.2

NP_034609

場所
(UCSC)
Chr 6: 31.83 – 31.83 MbChr 6: 35.19 – 35.19 Mb
PubMed検索[3][4]
ウィキデータ
閲覧/編集 ヒト閲覧/編集 マウス

機能

編集

HSPA1Bはシャペロンタンパク質であり、他の熱ショックタンパク質やシャペロンタンパク質と協働して細胞内の他のタンパク質のコンフォメーションを安定化し、ストレスによる凝集から保護することで、プロテオスタシス英語版を維持する[9]。また、Hsp70はタンパク質に対するシャペロン作用とは独立に、アデニンウラシルに富むmRNAに結合して安定化することが示されている[10]。Hsp70は結合したATPADP加水分解されることで基質を強固に結合するようになる。この加水分解の促進にはカリウムイオンを必要とする[11]

HSPA1Bは雄性生殖細胞系列の減数分裂時に特異的に発現しており、そこではCDC2サイクリンB1との複合体の形成に必要である[12]。またその後の段階では、精原細胞に運動性をもたらす特殊なカルシウムイオンチャネルであるCatSper英語版複合体へ組み込まれる[13]

臨床的意義

編集

マウスではHSPA1Bの発現が損なわれた際には、CDC2がサイクリンB1とヘテロ二量体を形成し減数分裂細胞の細胞周期S期以降へ進行させることができなくなるため、不妊が観察される[12]

卵巣がん、膀胱尿路上皮がん乳がんにおいて、形質転換腫瘍細胞でのHSPA1Bの発現は迅速な増殖、転移アポトーシス阻害へ関与していることが示唆されている。HSPA1Bのヌクレオチド1267番のSNPは慢性B型肝炎C型肝炎の患者の肝細胞がん発症リスクを高める[14]

相互作用

編集

HSPA1Bは次に挙げる因子と相互作用することが示されている。

出典

編集
  1. ^ a b c GRCh38: Ensembl release 89: ENSG00000232804、ENSG00000224501、ENSG00000212866、ENSG00000204388、ENSG00000231555 - Ensembl, May 2017
  2. ^ a b c GRCm38: Ensembl release 89: ENSMUSG00000091971 - Ensembl, May 2017
  3. ^ Human PubMed Reference:
  4. ^ Mouse PubMed Reference:
  5. ^ “Structure and expression of the three MHC-linked HSP70 genes”. Immunogenetics 32 (4): 242–251. (1990). doi:10.1007/BF00187095. PMID 1700760. 
  6. ^ Entrez Gene: HSPA1A heat shock 70kDa protein 1B”. 2024年2月29日閲覧。
  7. ^ a b “Genomic structure of the spermatid-specific hsp70 homolog gene located in the class III region of the major histocompatibility complex of mouse and man”. Journal of Biochemistry 124 (2): 347–353. (August 1998). doi:10.1093/oxfordjournals.jbchem.a022118. PMID 9685725. 
  8. ^ a b “Human major histocompatibility complex contains genes for the major heat shock protein HSP70”. Proceedings of the National Academy of Sciences of the United States of America 86 (6): 1968–1972. (March 1989). Bibcode1989PNAS...86.1968S. doi:10.1073/pnas.86.6.1968. PMC 286826. PMID 2538825. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC286826/. 
  9. ^ “The Hsp70 chaperone network”. Nature Reviews. Molecular Cell Biology 20 (11): 665–680. (November 2019). doi:10.1038/s41580-019-0133-3. PMID 31253954. 
  10. ^ “Hsp70's RNA-binding and mRNA-stabilizing activities are independent of its protein chaperone functions” (English). The Journal of Biological Chemistry 292 (34): 14122–14133. (August 2017). doi:10.1074/jbc.M117.785394. PMC 5572911. PMID 28679534. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5572911/. 
  11. ^ “Biochemical and structural studies on the high affinity of Hsp70 for ADP”. Protein Science 20 (8): 1367–1379. (August 2011). doi:10.1002/pro.663. PMC 3189522. PMID 21608060. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3189522/. 
  12. ^ a b “Role of heat shock protein HSP70-2 in spermatogenesis”. Reviews of Reproduction 4 (1): 23–30. (January 1999). doi:10.1530/ror.0.0040023. PMID 10051099. 
  13. ^ a b “CatSperbeta, a novel transmembrane protein in the CatSper channel complex” (English). The Journal of Biological Chemistry 282 (26): 18945–18952. (June 2007). doi:10.1074/jbc.M701083200. PMID 17478420. 
  14. ^ “Heat shock protein A1B 1267 polymorphism is highly associated with risk and prognosis of hepatocellular carcinoma: a case-control study”. Medicine 87 (2): 87–98. (March 2008). doi:10.1097/MD.0b013e31816be95c. PMID 18344806. 
  15. ^ “Nucleophosmin (NPM1/B23) interacts with activating transcription factor 5 (ATF5) protein and promotes proteasome- and caspase-dependent ATF5 degradation in hepatocellular carcinoma cells”. The Journal of Biological Chemistry 287 (23): 19599–19609. (June 2012). doi:10.1074/jbc.M112.363622. PMC 3365995. PMID 22528486. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3365995/. 
  16. ^ a b c d “Binding of human nucleotide exchange factors to heat shock protein 70 (Hsp70) generates functionally distinct complexes in vitro”. The Journal of Biological Chemistry 289 (3): 1402–1414. (January 2014). doi:10.1074/jbc.M113.521997. PMC 3894324. PMID 24318877. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3894324/. 
  17. ^ “HSP70-2 is required for CDC2 kinase activity in meiosis I of mouse spermatocytes”. Development 124 (15): 3007–3014. (August 1997). doi:10.1242/dev.124.15.3007. PMID 9247342. https://pubmed.ncbi.nlm.nih.gov/9247342/. 
  18. ^ “ChChd3, an inner mitochondrial membrane protein, is essential for maintaining crista integrity and mitochondrial function” (English). The Journal of Biological Chemistry 286 (4): 2918–2932. (January 2011). doi:10.1074/jbc.M110.171975. PMC 3024787. PMID 21081504. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3024787/. 
  19. ^ “Cofactor Tpr2 combines two TPR domains and a J domain to regulate the Hsp70/Hsp90 chaperone system”. The EMBO Journal 22 (14): 3613–3623. (July 2003). doi:10.1093/emboj/cdg362. PMC 165632. PMID 12853476. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC165632/. 
  20. ^ “Role of the cochaperone Tpr2 in Hsp90 chaperoning”. Biochemistry 47 (31): 8203–8213. (August 2008). doi:10.1021/bi800770g. PMID 18620420. 
  21. ^ “A novel nuclear DnaJ protein, DNAJC8, can suppress the formation of spinocerebellar ataxia 3 polyglutamine aggregation in a J-domain independent manner”. Biochemical and Biophysical Research Communications 474 (4): 626–633. (June 2016). doi:10.1016/j.bbrc.2016.03.152. PMID 27133716. 
  22. ^ “HDJC9, a novel human type C DnaJ/HSP40 member interacts with and cochaperones HSP70 through the J domain”. Biochemical and Biophysical Research Communications 353 (2): 280–285. (February 2007). doi:10.1016/j.bbrc.2006.12.013. PMID 17182002. 
  23. ^ “DNAJC9 integrates heat shock molecular chaperones into the histone chaperone network”. Molecular Cell 81 (12): 2533–2548.e9. (June 2021). doi:10.1016/j.molcel.2021.03.041. PMC 8221569. PMID 33857403. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8221569/. 
  24. ^ “The ubiquitin ligase Stub1 negatively modulates regulatory T cell suppressive activity by promoting degradation of the transcription factor Foxp3”. Immunity 39 (2): 272–285. (August 2013). doi:10.1016/j.immuni.2013.08.006. PMC 3817295. PMID 23973223. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3817295/. 
  25. ^ a b c d e f “ARD1-mediated Hsp70 acetylation balances stress-induced protein refolding and degradation”. Nature Communications 7: 12882. (October 2016). Bibcode2016NatCo...712882S. doi:10.1038/ncomms12882. PMC 5059642. PMID 27708256. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5059642/. 
  26. ^ “The disordered amino-terminus of SIMPL interacts with members of the 70-kDa heat-shock protein family”. DNA and Cell Biology 25 (12): 704–714. (December 2006). doi:10.1089/dna.2006.25.704. PMID 17233114. 
  27. ^ “Identification and characterization of a novel human methyltransferase modulating Hsp70 protein function through lysine methylation”. The Journal of Biological Chemistry 288 (39): 27752–27763. (September 2013). doi:10.1074/jbc.M113.483248. PMC 3784692. PMID 23921388. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3784692/. 
  28. ^ “HSP70 regulates the function of mitotic centrosomes”. Cellular and Molecular Life Sciences 73 (20): 3949–3960. (October 2016). doi:10.1007/s00018-016-2236-8. PMID 27137183. 
  29. ^ “The molecular chaperone HSP70 binds to and stabilizes NOD2, an important protein involved in Crohn disease”. The Journal of Biological Chemistry 289 (27): 18987–18998. (July 2014). doi:10.1074/jbc.M114.557686. PMC 4081938. PMID 24790089. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4081938/. 
  30. ^ “Human protein phosphatase 5 dissociates from heat-shock proteins and is proteolytically activated in response to arachidonic acid and the microtubule-depolymerizing drug nocodazole”. The Biochemical Journal 385 (Pt 1): 45–56. (January 2005). doi:10.1042/BJ20040690. PMC 1134672. PMID 15383005. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1134672/. 
  31. ^ “High-content genome-wide RNAi screens identify regulators of parkin upstream of mitophagy”. Nature 504 (7479): 291–295. (December 2013). Bibcode2013Natur.504..291H. doi:10.1038/nature12748. PMC 5841086. PMID 24270810. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5841086/. 
  32. ^ “Hsp70 and Hsp90 oppositely regulate TGF-β signaling through CHIP/Stub1”. Biochemical and Biophysical Research Communications 446 (1): 387–392. (March 2014). doi:10.1016/j.bbrc.2014.02.124. PMID 24613385. 
  33. ^ “Stable association of hsp90 and p23, but Not hsp70, with active human telomerase”. The Journal of Biological Chemistry 276 (19): 15571–15574. (May 2001). doi:10.1074/jbc.C100055200. PMID 11274138. 
  34. ^ “Hsp70 interacts with the retroviral restriction factor TRIM5alpha and assists the folding of TRIM5alpha”. The Journal of Biological Chemistry 285 (10): 7827–7837. (March 2010). doi:10.1074/jbc.M109.040618. PMC 2844226. PMID 20053985. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2844226/. 
  35. ^ “Phosphorylation and binding partner analysis of the TSC1-TSC2 complex”. Biochemical and Biophysical Research Communications 333 (3): 818–826. (August 2005). doi:10.1016/j.bbrc.2005.05.175. PMID 15963462. 

関連項目

編集

外部リンク

編集