数学、特に群論において、与えられたいくつかの群の直積(ちょくせき、英: direct product)は、それらを正規部分群として含むような新しい群を作る構成法である。
群 、 が与えられたとき、その集合としての直積 に、
-
として演算を定義すると、 は群になる。これを と の直積という。
同様に、有限個の群 が与えられたとき、その直積集合の元
-
に対して
-
と定義すると、 は群になり、これを の直積と言う。
一般に、群の族 が与えられると、その直積集合の元 , に対して、 によって演算を定義したものが群 の直積である。
群 と の直積 は、 と を正規部分群として含む(ただし はそれぞれの単位元)。これらはそれぞれ G, H と同型である。
とすると,次の等式が成り立つ。 についても同様である。よって,主張が従う[1].
群の直積 において群 の任意の元と群 との任意の元は可換である。
とすると,次が成り立つ。 したがって,主張が従う[2].
- 群 G, H, K に対し、次の同型が成り立つ。
- (普遍性)群 Gi (i ∈ I) が与えられているとする。πj : Πi ∈ I Gi → Gj (j ∈ I) を自然な射影とする。このとき任意の群 H と任意の群準同型写像 fj : H → Gj (j ∈ I) に対して、一意的な準同型 φ : H → Πi ∈ I Gi が存在して、fj = πj∘φ (j ∈ I) が成り立つ。つまり群の直積は群のなす圏の直積である。
- ^ 雪江 2010, p.60
- ^ 雪江 2010, p.60