錐台
(切頭体から転送)
この記事は英語版の対応するページを翻訳することにより充実させることができます。(2024年5月) 翻訳前に重要な指示を読むには右にある[表示]をクリックしてください。
|
錐台(すいだい、英: Frustum)は、錐体から、頂点を共有し相似に縮小した錐体を取り除いた立体図形であり、切頭錐体ともいう。あるいは言い換えれば、錐体面と2枚の平行な平面によって囲まれる立体図形である。
円錐からできる錐台を円錐台(切頭円錐)、角錐からできる錐台を角錐台(切頭角錐)、n 角錐からできる錐台を n 角錐台と呼ぶ。
錐台は2枚の平行な底面を持つ。台形の2本の底辺と同様に、それぞれを上底・下底と呼び区別することができる。底面の距離を高さと呼ぶ。
錐台の体積は、上底・下底の面積をそれぞれ s, S、高さを hと置くと、
となる。s = 0 (上底の面積が0)とすると錐体の体積の公式、s = S (上底と下底の面積が等しい)とすると柱体の体積の公式になる。