リチャード・シェーン
リチャード・メルヴィン・シェーン(Richard Melvin Shoen、1950年10月23日 - )は、アメリカ合衆国の数学者で、微分幾何学の業績で知られている。
リチャード・シェーン | |
---|---|
1976年のシェーン (ジョージ・バーグマンによる写真) | |
生誕 |
1950年10月23日(74歳) フォート・リカバリー、オハイオ州[1] |
国籍 | アメリカ合衆国 |
研究分野 | 数学 |
研究機関 |
スタンフォード大学 カリフォルニア大学バークレー校 カリフォルニア大学アーバイン校 |
出身校 | スタンフォード大学 |
博士課程 指導教員 | |
博士課程 指導学生 | |
主な業績 | |
主な受賞歴 | |
プロジェクト:人物伝 |
オハイオ州セリーナに生まれ、1968年フォートリカバリー高校を卒業後、デイトン大学で数学の学士号を得た。1977年スタンフォード大学で博士号を得た後、現在カリフォルニア大学アーバイン校のExcellence in Teaching Chairである。
シェーンは、1983年のマッカーサー・フェローである。
貢献
編集シェーンは、大域微分幾何学における解析的な手法の使用を研究してきた。1979年、かつての指導教授であるシン=トゥン・ヤウと共に、一般相対性理論における基本的な正値エネルギー定理を証明した。1983年、マッカーサー・フェローに選ばれ、1984年コンパクト多様体に関する山辺問題の完全な解法を見出した。この業績は、ヤウの初期の業績の中で開発されたアイデアとティエリー・オービンとニール・トラディンガーの部分的結果を、新しいテクニックと結合したものだった。結果の定理は、閉多様体上のあらゆるリーマン計量は、定スカラー曲率の計量を生成するためには、共形的に縮小されるであろう(すなわち、適切な正値関数を掛ける必要がある)ことを主張している。2007年、サイモン・ブレンドルとシェーンは、微分可能球面定理という正断面曲率の多様体における基本的な結果を証明した。シェーンはまた、極小曲面と調和写像の正則性理論に基本的な貢献もした。
シェーンの弟子には、ヒューバート・ブレイ、ホセ・F・エスコバル、アイラナ・フレイザー、チカコ・メセ、ウィリアム・ミニコッツィ2世、アンドレ・ネヴェスがいる[4]。
賞と栄誉
編集山辺問題に関する業績に対して、1989年シェーンはボッチャー記念賞を受賞した。シェーンは、1988年アメリカ芸術科学アカデミーの、1991年米国科学アカデミーの会員となり、1996年グッゲンハイム・フェローとなった。2012年、アメリカ数学会のフェローになった[5]。2015年には、アメリカ数学会の副会長に選出された[6]。2017年、シェーンは、チャールズ・フェファーマンと共同で、ウルフ賞数学部門を受賞した[7]。同年、カザン大学によるロバチェフスキー賞も受賞した[8]。2022年ショック賞受賞。
主な著作物
編集- Schoen, Richard M.; Simon, Leon; Yau, Shing-Tung (1975), “Curvature estimates for minimal hypersurfaces”, Acta Mathematica 134 (3–4): 275–288, doi:10.1007/bf02392104, MR423263
- Schoen, Richard M.; Yau, Shing-Tung (1979), “On the proof of the positive mass conjecture in general relativity”, Communications in Mathematical Physics 65 (1): 45–76, Bibcode: 1979CMaPh..65...45S, doi:10.1007/bf01940959, MR526976
- Fischer-Colbrie, Doris; Schoen, Richard M. (1980), “The structure of complete stable minimal surfaces in 3-manifolds of nonnegative scalar curvature”, Communications on Pure and Applied Mathematics 33 (2): 199–211, doi:10.1002/cpa.3160330206, MR562550
- Schoen, Richard M.; Yau, Shing-Tung (1981), “Proof of the positive mass theorem. II”, Communications in Mathematical Physics 79 (2): 231–260, Bibcode: 1981CMaPh..79..231S, doi:10.1007/bf01942062, MR612249
- Schoen, Richard M.; Uhlenbeck, Karen (1982), “A regularity theory for harmonic maps”, Journal of Differential Geometry 17 (2): 307–335, MR664498
- Schoen, Richard M. (1984), “Conformal deformation of a Riemannian metric to constant scalar curvature”, Journal of Differential Geometry 20 (2): 479–495, MR788292
- Gromov, Mikhael; Schoen, Richard M. (1992), “Harmonic maps into singular spaces and p-adic superrigidity for lattices in groups of rank one”, Institut des Hautes Études Scientifiques. Publications Mathématiques 76: 165–246, doi:10.1007/bf02699433, MR1215595
- Schoen, Richard M.; Wolfson, Jon (2001), “Minimizing area among Lagrangian surfaces: the mapping problem”, Journal of Differential Geometry 58 (1): 1–86, arXiv:math/0008244, MR1895348
- Brendle, Simon; Schoen, Richard M. (2009), “Manifolds with 1/4-pinched curvature are space forms”, Journal of the AMS 22 (1): 287–307, arXiv:0705.0766, Bibcode: 2009JAMS...22..287B, doi:10.1090/s0894-0347-08-00613-9, MR2449060
脚注
編集- ^ “Richard Melvin Schoen”. School of Mathematics and Statistics University of St Andrews, Scotland. 6 January 2017閲覧。
- ^ “Richard Schoen Announced as the Winner of the 2017 Lobachevsky Medal and Prize”. 11 April 2020閲覧。
- ^ http://www.rolfschockprizes.se/download/18.39ee338a159fb6d5d78e05/1489565086195/pop_matematik_en_170314_FINAL.pdf
- ^ “Richard Schoen - The Mathematics Genealogy Project”. www.genealogy.math.ndsu.nodak.edu. 2019年3月12日閲覧。
- ^ List of Fellows of the American Mathematical Society, retrieved 2013-07-14.
- ^ “American Mathematical Society”. 25 May 2016閲覧。
- ^ The Wolf Foundation – "Richard Schoen Winner of Wolf Prize in Mathematics - 2017"
- ^ Lobachevsky Medal and Prize Awarded to Richard Schoen
外部リンク
編集- Richard Schoen's Profile 公式ウェブサイト
- Personal web site
- O'Connor, John J.; Robertson, Edmund F., “リチャード・シェーン”, MacTutor History of Mathematics archive, University of St Andrews.
- リチャード・シェーン - Mathematics Genealogy Project
- Sormani, Christina (August 2018). “The Mathematics of Richard Schoen” (PDF). Notices of the American Mathematical Society 65 (11): 1349–1376 .