LRRK2(leucine-rich repeat kinase 2)は、Dardarinバスク語で「震え」を意味する"dardara"に由来する)やPARK8(初期にパーキンソン病との関係が明らかにされたことに由来する)の名称でも知られるプロテインキナーゼであり、ヒトではLRRK2遺伝子によってコードされる[5]。LRRK2はロイシンリッチリピートキナーゼファミリーのメンバーである。LRRK2遺伝子の変異はパーキンソン病やクローン病のリスクの増加と関係している[5][6]

LRRK2
PDBに登録されている構造
PDBオルソログ検索: RCSB PDBe PDBj
PDBのIDコード一覧

2ZEJ, 3D6T

識別子
記号LRRK2, AURA17, DARDARIN, PARK8, RIPK7, ROCO2, leucine-rich repeat kinase 2, leucine rich repeat kinase 2
外部IDOMIM: 609007 MGI: 1913975 HomoloGene: 18982 GeneCards: LRRK2
EC番号2.7.11.1
遺伝子の位置 (ヒト)
12番染色体 (ヒト)
染色体12番染色体 (ヒト)[1]
12番染色体 (ヒト)
LRRK2遺伝子の位置
LRRK2遺伝子の位置
バンドデータ無し開始点40,196,744 bp[1]
終点40,369,285 bp[1]
遺伝子の位置 (マウス)
15番染色体 (マウス)
染色体15番染色体 (マウス)[2]
15番染色体 (マウス)
LRRK2遺伝子の位置
LRRK2遺伝子の位置
バンドデータ無し開始点91,557,378 bp[2]
終点91,700,323 bp[2]
RNA発現パターン


さらなる参照発現データ
遺伝子オントロジー
分子機能 protein homodimerization activity
signaling receptor complex adaptor activity
clathrin binding
co-receptor binding
トランスフェラーゼ活性
GTPase activator activity
protein kinase activity
protein kinase A binding
peroxidase inhibitor activity
SNARE binding
ヌクレオチド結合
identical protein binding
GTPase activity
syntaxin-1 binding
protein serine/threonine kinase activity
tubulin binding
transmembrane transporter binding
microtubule binding
MAP kinase kinase activity
GTP binding
ATP binding
GTP-dependent protein kinase activity
beta-catenin destruction complex binding
血漿タンパク結合
キナーゼ活性
actin binding
magnesium ion binding
細胞の構成要素 cytoplasmic vesicle
エンドソーム
エキソソーム
Wnt signalosome
soma
trans-Golgi network
ミトコンドリア膜
シナプス
細胞質
ミトコンドリア外膜
synaptic vesicle membrane
細胞体
小胞体
細胞膜
微絨毛
ミトコンドリアマトリックス
dendrite cytoplasm
成長円錐
cell projection
樹状突起
リソソーム
neuron projection
Golgi-associated vesicle
ミトコンドリア
ミトコンドリア内膜
autolysosome
終末ボタン
細胞内

脂質ラフト
神経繊維
amphisome
multivesicular body, internal vesicle
シナプス小胞
封入体
細胞結合
cytoplasmic side of mitochondrial outer membrane
細胞質基質
ゴルジ体
postsynapse
細胞外空間
細胞核
intracellular membrane-bounded organelle
caveola neck
endoplasmic reticulum exit site
glutamatergic synapse
presynaptic cytosol
リボ核タンパク質
生物学的プロセス lysosome organization
酸化ストレスへの反応
cellular response to dopamine
regulation of autophagy
positive regulation of autophagy
positive regulation of dopamine receptor signaling pathway
regulation of neuroblast proliferation
intracellular distribution of mitochondria
negative regulation of protein processing
negative regulation of protein processing involved in protein targeting to mitochondrion
protein localization to mitochondrion
positive regulation of canonical Wnt signaling pathway
オートファジー
neuromuscular junction development
リン酸化
positive regulation of protein binding
regulation of branching morphogenesis of a nerve
mitochondrion localization
positive regulation of protein autoubiquitination
regulation of synaptic vesicle transport
positive regulation of protein phosphorylation
regulation of kidney size
regulation of synaptic vesicle exocytosis
positive regulation of MAP kinase activity
peptidyl-threonine phosphorylation
MAPK cascade
Wnt signalosome assembly
タンパク質リン酸化
regulation of synaptic transmission, glutamatergic
興奮性シナプス後電位
negative regulation of hydrogen peroxide-induced cell death
regulation of dopamine receptor signaling pathway
膜電位の制御
自己リン酸化
regulation of mitochondrial fission
regulation of neuron maturation
reactive oxygen species metabolic process
positive regulation of programmed cell death
regulation of neuron death
regulation of mitochondrial depolarization
cellular response to oxidative stress
negative regulation of late endosome to lysosome transport
intracellular signal transduction
regulation of lysosomal lumen pH
negative regulation of GTPase activity
locomotory exploration behavior
Golgi organization
canonical Wnt signaling pathway
neuron projection morphogenesis
positive regulation of protein ubiquitination
regulation of canonical Wnt signaling pathway
exploration behavior
cellular response to organic cyclic compound
tangential migration from the subventricular zone to the olfactory bulb
regulation of protein kinase A signaling
calcium-mediated signaling
negative regulation of thioredoxin peroxidase activity by peptidyl-threonine phosphorylation
negative regulation of endoplasmic reticulum stress-induced intrinsic apoptotic signaling pathway
positive regulation of proteasomal ubiquitin-dependent protein catabolic process
negative regulation of neuron death
negative regulation of protein targeting to mitochondrion
peptidyl-serine phosphorylation
determination of adult lifespan
negative regulation of excitatory postsynaptic potential
negative regulation of protein phosphorylation
neuron death
GTP metabolic process
negative regulation of autophagosome assembly
olfactory bulb development
cellular response to starvation
regulation of dendritic spine morphogenesis
細胞分化
エンドサイトーシス
negative regulation of protein binding
mitochondrion organization
cellular response to manganese ion
negative regulation of macroautophagy
運動の調節
positive regulation of GTPase activity
regulation of retrograde transport, endosome to Golgi
regulation of CAMKK-AMPK signaling cascade
positive regulation of histone deacetylase activity
endoplasmic reticulum organization
精子形成
遺伝子発現調節
negative regulation of neuron projection development
striatum development
タンパク質安定性の制御
positive regulation of nitric-oxide synthase biosynthetic process
regulation of ER to Golgi vesicle-mediated transport
protein localization to endoplasmic reticulum exit site
neuron projection arborization
regulation of synaptic vesicle endocytosis
positive regulation of synaptic vesicle endocytosis
positive regulation of microglial cell activation
protein import into nucleus
出典:Amigo / QuickGO
オルソログ
ヒトマウス
Entrez
Ensembl
UniProt
RefSeq
(mRNA)

NM_198578

NM_025730

RefSeq
(タンパク質)

NP_940980

NP_080006

場所
(UCSC)
Chr 12: 40.2 – 40.37 MbChr 12: 91.56 – 91.7 Mb
PubMed検索[3][4]
ウィキデータ
閲覧/編集 ヒト閲覧/編集 マウス

機能

編集

LRRK2は、アルマジロリピート(ARM)領域、アンキリンリピート英語版(ANK)領域、ロイシンリッチリピート(LRR)ドメイン、キナーゼドメイン、GTPアーゼ(ROC)ドメイン、COR(C-terminal of ROC)ドメイン、WD40ドメインを持つ[7]。このタンパク質は主に細胞質に存在するが、ミトコンドリア外膜とも結合している。

LRRK2はパーキン英語版C末端のR2 RINGフィンガードメインと相互作用し、パーキンはLRRK2のCORドメインと相互作用する。神経芽腫細胞やマウス皮質神経細胞において、LRRK2変異体の発現はアポトーシスによる細胞死を誘導する[8]

常染色体優性型パーキンソン病への関与が示唆されている変異型LRRK2の発現は、in vivoと培養神経細胞の双方で神経突起の長さや分枝の減少を引き起こす[9]。この効果はマクロオートファジーの変化がその一因となっており[10][11][12][13][14]プロテインキナーゼAによるオートファジータンパク質LC3英語版の調節によって阻害される[15]。G2019SやR1441C変異はシナプス後のカルシウムバランスの異常を引き起こし、マイトファジーによって樹状突起からミトコンドリアの過剰な除去をもたらす[16]。LRRK2はシャペロン介在性オートファジー(chaperone-mediated autophagy)の基質でもある[17]

臨床的意義

編集

LRRK2遺伝子の変異はパーキンソン病8型(PARK8)と関係している[18]

G2019S変異ではキナーゼ活性の亢進がみられ、この変異は白人の家族性パーキンソン病の原因として比較的広くみられる[19]。この変異は孤発性パーキンソン病を引き起こしている可能性もある。変異が生じるグリシン残基は全ての生物種のキナーゼドメインで保存されている。

G2019S変異は、LRRK2遺伝子の変異としてパーキンソン病の原因となることが実証されている少数の例の1つである。G2019S変異は西洋諸国で最も一般的な変異であり、北アメリカの白人のパーキンソン病の全ての症例の約2%を占める。またこの変異は特定の集団に高頻度でみられ、アシュケナジムのパーキンソン病患者の約20%、北アフリカのベルベル人に祖先を持つパーキンソン病患者の約40%に見つかる[20][21]

ゲノムワイド関連解析によってLRRK2はパーキンソン病だけでなくクローン病とも関係していることが示されており、この2つの疾患が共通した経路を持つことが示唆されている[22][23]

出典

編集
  1. ^ a b c GRCh38: Ensembl release 89: ENSG00000188906 - Ensembl, May 2017
  2. ^ a b c GRCm38: Ensembl release 89: ENSMUSG00000036273 - Ensembl, May 2017
  3. ^ Human PubMed Reference:
  4. ^ Mouse PubMed Reference:
  5. ^ a b “Cloning of the gene containing mutations that cause PARK8-linked Parkinson's disease”. Neuron 44 (4): 595–600. (November 2004). doi:10.1016/j.neuron.2004.10.023. PMID 15541308. 
  6. ^ “Mutations in LRRK2 cause autosomal-dominant parkinsonism with pleomorphic pathology”. Neuron 44 (4): 601–7. (November 2004). doi:10.1016/j.neuron.2004.11.005. PMID 15541309. 
  7. ^ 川上文貴; 市川尊文『パーキンソン病原因分子LRRK2によるTauの異常リン酸化機構』公益社団法人日本生化学会、2016年4月25日。doi:10.14952/seikagaku.2016.880248https://doi.org/10.14952/SEIKAGAKU.2016.8802482022年5月8日閲覧 
  8. ^ “Leucine-rich repeat kinase 2 (LRRK2) interacts with parkin, and mutant LRRK2 induces neuronal degeneration”. Proceedings of the National Academy of Sciences of the United States of America 102 (51): 18676–81. (December 2005). Bibcode2005PNAS..10218676S. doi:10.1073/pnas.0508052102. PMC 1317945. PMID 16352719. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1317945/. 
  9. ^ “The familial Parkinsonism gene LRRK2 regulates neurite process morphology”. Neuron 52 (4): 587–93. (November 2006). doi:10.1016/j.neuron.2006.10.008. PMID 17114044. 
  10. ^ “Role of autophagy in G2019S-LRRK2-associated neurite shortening in differentiated SH-SY5Y cells”. Journal of Neurochemistry 105 (3): 1048–56. (May 2008). doi:10.1111/j.1471-4159.2008.05217.x. PMC 2361385. PMID 18182054. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2361385/. 
  11. ^ “Disrupted autophagy leads to dopaminergic axon and dendrite degeneration and promotes presynaptic accumulation of α-synuclein and LRRK2 in the brain”. The Journal of Neuroscience 32 (22): 7585–93. (May 2012). doi:10.1523/JNEUROSCI.5809-11.2012. PMC 3382107. PMID 22649237. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3382107/. 
  12. ^ “Leucine-rich repeat kinase 2 regulates autophagy through a calcium-dependent pathway involving NAADP”. Human Molecular Genetics 21 (3): 511–25. (February 2012). doi:10.1093/hmg/ddr481. PMC 3259011. PMID 22012985. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3259011/. 
  13. ^ Cai, Huaibin, ed (April 2011). “Dopaminergic neuronal loss, reduced neurite complexity and autophagic abnormalities in transgenic mice expressing G2019S mutant LRRK2”. PLOS ONE 6 (4): e18568. Bibcode2011PLoSO...618568R. doi:10.1371/journal.pone.0018568. PMC 3071839. PMID 21494637. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3071839/. 
  14. ^ “LRRK2 regulates autophagic activity and localizes to specific membrane microdomains in a novel human genomic reporter cellular model”. Human Molecular Genetics 18 (21): 4022–34. (November 2009). doi:10.1093/hmg/ddp346. PMC 2758136. PMID 19640926. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2758136/. 
  15. ^ “Regulation of the autophagy protein LC3 by phosphorylation”. The Journal of Cell Biology 190 (4): 533–9. (August 2010). doi:10.1083/jcb.201002108. PMC 2928022. PMID 20713600. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2928022/. 
  16. ^ “Mutant LRRK2 elicits calcium imbalance and depletion of dendritic mitochondria in neurons”. The American Journal of Pathology 182 (2): 474–84. (February 2013). doi:10.1016/j.ajpath.2012.10.027. PMC 3562730. PMID 23231918. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3562730/. 
  17. ^ “Interplay of LRRK2 with chaperone-mediated autophagy”. Nature Neuroscience 16 (4): 394–406. (April 2013). doi:10.1038/nn.3350. PMC 3609872. PMID 23455607. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3609872/. 
  18. ^ Entrez Gene: LRRK2 leucine-rich repeat kinase 2”. 2022年5月11日閲覧。
  19. ^ “A common LRRK2 mutation in idiopathic Parkinson's disease”. Lancet 365 (9457): 415–6. (February 2005). doi:10.1016/S0140-6736(05)17830-1. PMID 15680457. 
  20. ^ “Phenotype, genotype, and worldwide genetic penetrance of LRRK2-associated Parkinson's disease: a case-control study”. The Lancet. Neurology 7 (7): 583–90. (July 2008). doi:10.1016/S1474-4422(08)70117-0. PMC 2832754. PMID 18539534. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2832754/. 
  21. ^ “LRRK2 G2019S as a cause of Parkinson's disease in North African Arabs”. The New England Journal of Medicine 354 (4): 422–3. (January 2006). doi:10.1056/NEJMc055540. PMID 16436781. 
  22. ^ “Genomewide association studies and assessment of the risk of disease”. The New England Journal of Medicine 363 (2): 166–76. (July 2010). doi:10.1056/NEJMra0905980. PMID 20647212. 
  23. ^ “Imputation of sequence variants for identification of genetic risks for Parkinson's disease: a meta-analysis of genome-wide association studies”. Lancet 377 (9766): 641–9. (February 2011). doi:10.1016/S0140-6736(10)62345-8. PMC 3696507. PMID 21292315. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3696507/. 

関連文献

編集

外部リンク

編集