KP方程式
非線形波動・水面波を記述する偏微分方程式
KP方程式 (英: Kadomtsev–Petviashvili equation) は非線形波動・水面波を記述する偏微分方程式であり、次のように表わされる。
変種
編集KP方程式に関連した業績のある研究者
編集海外
編集日本
編集関連項目
編集出典
編集- ^ Wazwaz, A. M. (2008). Solitons and singular solitons for the Gardner–KP equation. Applied Mathematics and Computation, 204(1), 162-169.
- ^ Xu, B., & Liu, X. Q. (2009). Classification, reduction, group invariant solutions and conservation laws of the Gardner-KP equation. Applied mathematics and computation, 215(3), 1244-1250.
- ^ Naz, R., Ali, Z., & Naeem, I. (2013). Reductions and new exact solutions of ZK, Gardner KP, and modified KP equations via generalized double reduction theorem. In Abstract and Applied Analysis (Vol. 2013). Hindawi.
- ^ Jawad, A. J. A. M., Mirzazadeh, M., & Biswas, A. (2015). Dynamics of shallow water waves with Gardner–Kadomtsev–Petviashvili equation. Discrete and Continuous Dynamical Systems, Series S, 8(6), 1155-1164.
- ^ Wazwaz, A. M., & El-Tantawy, S. A. (2017). Solving the -dimensional KP–Boussinesq and BKP–Boussinesq equations by the simplified Hirota’s method. Nonlinear Dynamics, 88(4), 3017-3021.
- ^ Sun, B., & Wazwaz, A. M. (2018). General high–order breathers and rogue waves in the -dimensional KP–Boussinesq equation. Communications in Nonlinear Science and Numerical Simulation, 64, 1-13.
- ^ Wazwaz, A. M. (2008). Multiple-soliton solutions for the Lax–Kadomtsev–Petviashvili (Lax–KP) equation. Applied Mathematics and computation, 201(1-2), 168-174.
- ^ Tokihiro, T., Takahashi, D., & Matsukidaira, J. (2000). Box and ball system as a realization of ultradiscrete nonautonomous KP equation. Journal of Physics A: Mathematical and General, 33(3), 607.
- ^ a b Shinzawa, N., & Hirota, R. (2003). The Bäcklund transformation equations for the ultradiscrete KP equation. Journal of Physics A: Mathematical and General, 36(16), 4667.
- ^ a b 新沢信彦, & 広田良吾. (2003). 超離散 KP 方程式, 超離散 BKP 方程式の Backlund 変換方程式 (可積分系研究の新展開: 連続・離散・超離散).
- ^ Krichever, I. M., & Novikov, S. P. (1978). Holomorphic bundles over Riemann surfaces and the Kadomtsev—Petviashvili equation. I. Functional Analysis and Its Applications, 12(4), 276-286.
- ^ Fokas, A. S., & Ablowitz, M. J. (1983). Method of solution for a class of multidimensional nonlinear evolution equations. Physical Review Letters, 51(1), 7.
- ^ Fokas, A. S., & Ablowitz, M. J. (1983). On the inverse scattering and direct linearizing transforms for the Kadomtsev-Petviashvili equation. Physics Letters A, 94(2), 67-70.
- ^ Fokas, A. S., & Ablowitz, M. J. (1983). On the Inverse Scattering of the Time‐Dependent Schrödinger Equation and the Associated Kadomtsev‐Petviashvili (I) Equation. Studies in Applied Mathematics, 69(3), 211-228.
- ^ a b Hirota, R., Ohta, Y., & Satsuma, J. (1988). Solutions of the Kadomtsev-Petviashvili equation and the two-dimensional Toda equations. Journal of the Physical Society of Japan, 57(6), 1901-1904.
- ^ 松木平淳太, & 薩摩順吉. (1989). KP hierarchy の対称性と保存量 (ソリトン理論における広田の方法).
- ^ Willox, R., Tokihiro, T., & Satsuma, J. (1997). Darboux and binary Darboux transformations for the nonautonomous discrete KP equation. Journal of Mathematical Physics, 38(12), 6455-6469.
- ^ Isojima, S., Willox, R., & Satsuma, J. (2002). On various solutions of the coupled KP equation. Journal of Physics A: Mathematical and General, 35(32), 6893.
- ^ a b Matsukidaira, J., Satsuma, J., & Strampp, W. (1990). Conserved quantities and symmetries of KP hierarchy. Journal of mathematical physics, 31(6), 1426-1434.
- ^ Kajiwara, K., Matsukidaira, J., & Satsuma, J. (1990). Conserved quantities of two-component KP hierarchy. Physics Letters A, 146(3), 115-118.
- ^ Date, E., Jimbo, M., Kashiwara, M., & Miwa, T. (1982). Transformation groups for soliton equations—Euclidean Lie algebras and reduction of the KP hierarchy—. Publications of the Research Institute for Mathematical Sciences, 18(3), 1077-1110.
- ^ Date, E., Jimbo, M., Kashiwara, M., & Miwa, T. (1981). Operator Approach to the Kadomtsev-Petviashvili Equation–Transformation Groups for Soliton Equations III–. Journal of the Physical Society of Japan, 50(11), 3806-3812.
- ^ Date, E., Jimbo, M., Kashiwara, M., & Miwa, T. (1982). Transformation groups for soliton equations: IV. A new hierarchy of soliton equations of KP-type. Physica D: Nonlinear Phenomena, 4(3), 343-365.
- ^ Date, E., Jimbo, M., Kashiwara, M., & Miwa, T. (1982). Quasi-Periodic Solutions of the Orthogonal KP Equation—Transformation Groups for Soliton Equations V—. Publications of the Research Institute for Mathematical Sciences, 18(3), 1111-1119.
- ^ Date, E., Jimbo, M., Kashiwara, M., & Miwa, T. (1981). KP hierarchies of orthogonal and symplectic type–Transformation groups for soliton equations VI–. Journal of the Physical Society of Japan, 50(11), 3813-3818.
- ^ 広田良吾『KP差分方程式系とその解の構造』(レポート) 24AO-S3、7号、九州大学応用力学研究所、2013年、49-57頁。doi:10.15017/27167。hdl:2324/27167 。「九州大学応用力学研究所研究集会報告 No.23AO-S7 「非線形波動研究の進展 : 現象と数理の相互作用」」
- ^ Ohkuma, Kenji; Wadati, Miki (1983). “The Kadomtsev-Petviashvili Equation: the Trace Method and the Soliton Resonances”. Journal of the Physical Society of Japan (日本物理学会) 52 (3): 749-760. CRID 1390001204185121408. doi:10.1143/jpsj.52.749. ISSN 00319015. "MRID:702929"
参考文献
編集- Kadomtsev, B. B.; Petviashvili, V. I. (1970). “On the stability of solitary waves in weakly dispersive media”. Sov. Phys. Dokl. 15: 539–541. Bibcode: 1970SPhD...15..539K.. Translation of “Об устойчивости уединенных волн в слабо диспергирующих средах”. Doklady Akademii Nauk SSSR 192: 753–756.
- Previato, Emma (2001), “KP-equation”, in Hazewinkel, Michiel, Encyclopedia of Mathematics, Springer, ISBN 978-1-55608-010-4
- Kodama, Y. (2017). KP Solitons and the Grassmannians: combinatorics and geometry of two-dimensional wave patterns. Springer.
- 時弘哲治、箱玉系の数理、朝倉書店。
関連文献
編集和文
編集- 塩田隆比呂「KP方程式とSchottky問題」『数学』第41巻第1号、日本数学会、1989年、16-33頁、CRID 1390282680042479744、doi:10.11429/sugaku1947.41.16、ISSN 0039470X。
- 藤井信太郎, 京藤敏達, 西村仁嗣「KP方程式を用いたマッハ反射の数値解析」『海岸工学論文集』第43巻、土木学会、1996年、31-35頁、CRID 1390282679526394496、doi:10.2208/proce1989.43.31、ISSN 0916-7897。
- 応用力学研究所研究集会報告 No.16ME-S1「非線形波動の物理と数理構造」 (PDF) Reports of RIAM Symposium No.16ME-S1, Physics and Mathematical Structures of Nonlinear Waves, Proceedings of a symposium held at Chikushi Campus, Kyushu University, Kasuga, Fukuoka, Japan, November 15 - 17, 2004. Article No. 32: KP方程式による孤立波相互作用とRogue Waveの関連について, 辻英一,及川正行, A. V. Porubov.
- 塩崎峻介, 村上洋一「KP方程式における線ソリトンの不安定性に関する直接数値計算 (非線形波動現象の数理と応用)」『数理解析研究所講究録』第1645巻、京都大学数理解析研究所、157-167頁、CRID 1050282677155323392、hdl:2433/140667、ISSN 1880-2818。
- 及川正行「第8章 KP方程式のソリトン解 : 連載—非線形波動 -ソリトンを中心として-」(PDF)『ながれ』第32巻第3号、日本流体力学会、2013年6月、251-266頁、ISSN 02863154。
英文
編集- Lou, S. Y., & Hu, X. B. (1997). Infinitely many Lax pairs and symmetry constraints of the KP equation. Journal of Mathematical Physics, 38(12), 6401-6427.
- Nakamura, A. (1989). A bilinear N-soliton formula for the KP equation. Journal of the Physical Society of Japan, 58(2), 412-422.
- Kodama, Y. (2004). Young diagrams and N-soliton solutions of the KP equation. Journal of Physics A: Mathematical and General, 37(46), 11169.
- Xiao, T., & Zeng, Y. (2004). Generalized Darboux transformations for the KP equation with self-consistent sources. Journal of Physics A: Mathematical and General, 37(28), 7143.
- Minzoni, A. A., & Smyth, N. F. (1996). Evolution of lump solutions for the KP equation. Wave Motion, 24(3), 291-305.
外部リンク
編集- Weisstein, Eric W. "Kadomtsev–Petviashvili equation". mathworld.wolfram.com (英語).
- Gioni Biondini and Dmitri Pelinovsky (ed.). "Kadomtsev–Petviashvili equation". Scholarpedia.
- www
.amath .washington .edu /~bernard /kp .html (The KP page by Bernard Deconinck, University of Washington, Department of Applied Mathematics)