ホーム
おまかせ表示
付近
ログイン
設定
寄付
ウィキペディアについて
免責事項
検索
逆三角関数の原始関数の一覧
ウィキメディアの一覧記事
言語
ウォッチリストに追加
編集
この記事は
検証可能
な
参考文献や出典
が全く示されていないか、不十分です。
出典を追加
して記事の信頼性向上にご協力ください。
(
このテンプレートの使い方
)
出典検索
?
:
"逆三角関数の原始関数の一覧"
–
ニュース
·
書籍
·
スカラー
·
CiNii
·
J-STAGE
·
NDL
·
dlib.jp
·
ジャパンサーチ
·
TWL
(
2016年1月
)
本項は
逆三角関数
を含む式の
原始関数
の一覧である。さらに完全な原始関数の一覧は、
原始関数の一覧
を参照のこと。
以下の全ての記述において、
a
は 0 でない実数とする。また、
C
は積分定数とする。
目次
1
逆正弦関数の積分
2
逆余弦関数の積分
3
逆正接関数の積分
4
逆余接関数の積分
5
逆正割関数の積分
6
逆余割関数の積分
逆正弦関数の積分
編集
∫
arcsin
x
d
x
=
x
arcsin
x
+
1
−
x
2
+
C
{\displaystyle \int \arcsin x\,dx=x\arcsin x+{\sqrt {1-x^{2}}}+C}
∫
arcsin
a
x
d
x
=
x
arcsin
a
x
+
1
−
a
2
x
2
a
+
C
{\displaystyle \int \arcsin ax\,dx=x\arcsin ax+{\frac {\sqrt {1-a^{2}x^{2}}}{a}}+C}
∫
x
arcsin
a
x
d
x
=
x
2
arcsin
a
x
2
−
arcsin
a
x
4
a
2
+
x
1
−
a
2
x
2
4
a
+
C
{\displaystyle \int x\arcsin ax\,dx={\frac {x^{2}\arcsin ax}{2}}-{\frac {\arcsin ax}{4a^{2}}}+{\frac {x{\sqrt {1-a^{2}x^{2}}}}{4\,a}}+C}
∫
x
2
arcsin
a
x
d
x
=
x
3
arcsin
a
x
3
+
(
a
2
x
2
+
2
)
1
−
a
2
x
2
9
a
3
+
C
{\displaystyle \int x^{2}\arcsin ax\,dx={\frac {x^{3}\arcsin ax}{3}}+{\frac {\left(a^{2}x^{2}+2\right){\sqrt {1-a^{2}x^{2}}}}{9\,a^{3}}}+C}
∫
x
m
arcsin
a
x
d
x
=
x
m
+
1
arcsin
a
x
m
+
1
−
a
m
+
1
∫
x
m
+
1
1
−
a
2
x
2
d
x
(
m
≠
−
1
)
{\displaystyle \int x^{m}\arcsin ax\,dx={\frac {x^{m+1}\arcsin ax}{m+1}}\,-\,{\frac {a}{m+1}}\int {\frac {x^{m+1}}{\sqrt {1-a^{2}x^{2}}}}\,dx\quad (m\neq -1)}
∫
(
arcsin
a
x
)
2
d
x
=
−
2
x
+
x
(
arcsin
a
x
)
2
+
2
1
−
a
2
x
2
arcsin
a
x
a
+
C
{\displaystyle \int (\arcsin ax)^{2}\,dx=-2\,x+x\,(\arcsin ax)^{2}+{\frac {2{\sqrt {1-a^{2}x^{2}}}\arcsin ax}{a}}+C}
∫
(
arcsin
a
x
)
n
d
x
=
x
(
arcsin
a
x
)
n
+
n
1
−
a
2
x
2
(
arcsin
a
x
)
n
−
1
a
−
n
(
n
−
1
)
∫
(
arcsin
a
x
)
n
−
2
d
x
{\displaystyle \int (\arcsin ax)^{n}\,dx=x\,(\arcsin ax)^{n}\,+\,{\frac {n{\sqrt {1-a^{2}x^{2}}}\,(\arcsin ax)^{n-1}}{a}}\,-\,n\,(n-1)\int (\arcsin ax)^{n-2}\,dx}
∫
(
arcsin
a
x
)
n
d
x
=
x
(
arcsin
a
x
)
n
+
2
(
n
+
1
)
(
n
+
2
)
+
1
−
a
2
x
2
(
arcsin
a
x
)
n
+
1
a
(
n
+
1
)
−
1
(
n
+
1
)
(
n
+
2
)
∫
(
arcsin
a
x
)
n
+
2
d
x
(
n
≠
−
1
,
−
2
)
{\displaystyle \int (\arcsin ax)^{n}\,dx={\frac {x\,(\arcsin ax)^{n+2}}{(n+1)\,(n+2)}}\,+\,{\frac {{\sqrt {1-a^{2}x^{2}}}\,(\arcsin ax)^{n+1}}{a\,(n+1)}}\,-\,{\frac {1}{(n+1)\,(n+2)}}\int (\arcsin ax)^{n+2}\,dx\quad (n\neq -1,-2)}
逆余弦関数の積分
編集
∫
arccos
x
d
x
=
x
arccos
x
−
1
−
x
2
+
C
{\displaystyle \int \arccos x\,dx=x\arccos x-{\sqrt {1-x^{2}}}+C}
∫
arccos
a
x
d
x
=
x
arccos
a
x
−
1
−
a
2
x
2
a
+
C
{\displaystyle \int \arccos ax\,dx=x\arccos ax-{\frac {\sqrt {1-a^{2}x^{2}}}{a}}+C}
∫
x
arccos
a
x
d
x
=
x
2
arccos
a
x
2
−
arccos
a
x
4
a
2
−
x
1
−
a
2
x
2
4
a
+
C
{\displaystyle \int x\arccos ax\,dx={\frac {x^{2}\arccos ax}{2}}-{\frac {\arccos ax}{4\,a^{2}}}-{\frac {x{\sqrt {1-a^{2}x^{2}}}}{4\,a}}+C}
∫
x
2
arccos
a
x
d
x
=
x
3
arccos
a
x
3
−
(
a
2
x
2
+
2
)
1
−
a
2
x
2
9
a
3
+
C
{\displaystyle \int x^{2}\arccos ax\,dx={\frac {x^{3}\arccos ax}{3}}-{\frac {\left(a^{2}x^{2}+2\right){\sqrt {1-a^{2}x^{2}}}}{9\,a^{3}}}+C}
∫
x
m
arccos
a
x
d
x
=
x
m
+
1
arccos
a
x
m
+
1
+
a
m
+
1
∫
x
m
+
1
1
−
a
2
x
2
d
x
(
m
≠
−
1
)
{\displaystyle \int x^{m}\arccos ax\,dx={\frac {x^{m+1}\arccos ax}{m+1}}\,+\,{\frac {a}{m+1}}\int {\frac {x^{m+1}}{\sqrt {1-a^{2}x^{2}}}}\,dx\quad (m\neq -1)}
∫
(
arccos
a
x
)
2
d
x
=
−
2
x
+
x
(
arccos
a
x
)
2
−
2
1
−
a
2
x
2
arccos
a
x
a
+
C
{\displaystyle \int (\arccos ax)^{2}\,dx=-2\,x+x\,(\arccos ax)^{2}-{\frac {2{\sqrt {1-a^{2}x^{2}}}\arccos ax}{a}}+C}
∫
(
arccos
a
x
)
n
d
x
=
x
(
arccos
a
x
)
n
−
n
1
−
a
2
x
2
(
arccos
a
x
)
n
−
1
a
−
n
(
n
−
1
)
∫
(
arccos
a
x
)
n
−
2
d
x
{\displaystyle \int (\arccos ax)^{n}\,dx=x\,(\arccos ax)^{n}\,-\,{\frac {n{\sqrt {1-a^{2}x^{2}}}\,(\arccos ax)^{n-1}}{a}}\,-\,n\,(n-1)\int (\arccos ax)^{n-2}\,dx}
∫
(
arccos
a
x
)
n
d
x
=
x
(
arccos
a
x
)
n
+
2
(
n
+
1
)
(
n
+
2
)
−
1
−
a
2
x
2
(
arccos
a
x
)
n
+
1
a
(
n
+
1
)
−
1
(
n
+
1
)
(
n
+
2
)
∫
(
arccos
a
x
)
n
+
2
d
x
(
n
≠
−
1
,
−
2
)
{\displaystyle \int (\arccos ax)^{n}\,dx={\frac {x\,(\arccos ax)^{n+2}}{(n+1)\,(n+2)}}\,-\,{\frac {{\sqrt {1-a^{2}x^{2}}}\,(\arccos ax)^{n+1}}{a\,(n+1)}}\,-\,{\frac {1}{(n+1)\,(n+2)}}\int (\arccos ax)^{n+2}\,dx\quad (n\neq -1,-2)}
逆正接関数の積分
編集
∫
arctan
x
d
x
=
x
arctan
x
−
ln
(
x
2
+
1
)
2
+
C
{\displaystyle \int \arctan x\,dx=x\arctan x-{\frac {\ln(x^{2}+1)}{2}}+C}
∫
arctan
a
x
d
x
=
x
arctan
a
x
−
ln
(
a
2
x
2
+
1
)
2
a
+
C
{\displaystyle \int \arctan ax\,dx=x\arctan ax-{\frac {\ln(a^{2}x^{2}+1)}{2\,a}}+C}
∫
x
arctan
a
x
d
x
=
x
2
arctan
a
x
2
+
arctan
a
x
2
a
2
−
x
2
a
+
C
{\displaystyle \int x\arctan ax\,dx={\frac {x^{2}\arctan ax}{2}}+{\frac {\arctan ax}{2\,a^{2}}}-{\frac {x}{2\,a}}+C}
∫
x
2
arctan
a
x
d
x
=
x
3
arctan
a
x
3
+
ln
(
a
2
x
2
+
1
)
6
a
3
−
x
2
6
a
+
C
{\displaystyle \int x^{2}\arctan ax\,dx={\frac {x^{3}\arctan ax}{3}}+{\frac {\ln(a^{2}x^{2}+1)}{6\,a^{3}}}-{\frac {x^{2}}{6\,a}}+C}
∫
x
m
arctan
a
x
d
x
=
x
m
+
1
arctan
a
x
m
+
1
−
a
m
+
1
∫
x
m
+
1
a
2
x
2
+
1
d
x
(
m
≠
−
1
)
{\displaystyle \int x^{m}\arctan ax\,dx={\frac {x^{m+1}\arctan ax}{m+1}}-{\frac {a}{m+1}}\int {\frac {x^{m+1}}{a^{2}x^{2}+1}}\,dx\quad (m\neq -1)}
逆余接関数の積分
編集
∫
arccot
x
d
x
=
x
arccot
x
+
ln
(
x
2
+
1
)
2
+
C
{\displaystyle \int \operatorname {arccot} x\,dx=x\operatorname {arccot} x+{\frac {\ln \left(x^{2}+1\right)}{2}}+C}
∫
arccot
a
x
d
x
=
x
arccot
a
x
+
ln
(
a
2
x
2
+
1
)
2
a
+
C
{\displaystyle \int \operatorname {arccot} ax\,dx=x\operatorname {arccot} ax+{\frac {\ln \left(a^{2}x^{2}+1\right)}{2\,a}}+C}
∫
x
arccot
a
x
d
x
=
x
2
arccot
a
x
2
+
arccot
a
x
2
a
2
+
x
2
a
+
C
{\displaystyle \int x\operatorname {arccot} ax\,dx={\frac {x^{2}\operatorname {arccot} ax}{2}}+{\frac {\operatorname {arccot} ax}{2\,a^{2}}}+{\frac {x}{2\,a}}+C}
∫
x
2
arccot
a
x
d
x
=
x
3
arccot
a
x
3
−
ln
(
a
2
x
2
+
1
)
6
a
3
+
x
2
6
a
+
C
{\displaystyle \int x^{2}\operatorname {arccot} ax\,dx={\frac {x^{3}\operatorname {arccot} ax}{3}}-{\frac {\ln \left(a^{2}x^{2}+1\right)}{6\,a^{3}}}+{\frac {x^{2}}{6\,a}}+C}
∫
x
m
arccot
a
x
d
x
=
x
m
+
1
arccot
a
x
m
+
1
+
a
m
+
1
∫
x
m
+
1
a
2
x
2
+
1
d
x
(
m
≠
−
1
)
{\displaystyle \int x^{m}\operatorname {arccot} ax\,dx={\frac {x^{m+1}\operatorname {arccot} ax}{m+1}}+{\frac {a}{m+1}}\int {\frac {x^{m+1}}{a^{2}x^{2}+1}}\,dx\quad (m\neq -1)}
逆正割関数の積分
編集
∫
arcsec
x
d
x
=
x
arcsec
x
−
arctanh
1
−
1
x
2
+
C
{\displaystyle \int \operatorname {arcsec} x\,dx=x\operatorname {arcsec} x-\operatorname {arctanh} \,{\sqrt {1-{\frac {1}{x^{2}}}}}+C}
∫
arcsec
a
x
d
x
=
x
arcsec
a
x
−
1
a
arctanh
1
−
1
a
2
x
2
+
C
{\displaystyle \int \operatorname {arcsec} ax\,dx=x\operatorname {arcsec} ax-{\frac {1}{a}}\,\operatorname {arctanh} \,{\sqrt {1-{\frac {1}{a^{2}x^{2}}}}}+C}
∫
x
arcsec
a
x
d
x
=
x
2
arcsec
a
x
2
−
x
2
a
1
−
1
a
2
x
2
+
C
{\displaystyle \int x\operatorname {arcsec} ax\,dx={\frac {x^{2}\operatorname {arcsec} ax}{2}}-{\frac {x}{2\,a}}{\sqrt {1-{\frac {1}{a^{2}x^{2}}}}}+C}
∫
x
2
arcsec
a
x
d
x
=
x
3
arcsec
a
x
3
−
1
6
a
3
arctanh
1
−
1
a
2
x
2
−
x
2
6
a
1
−
1
a
2
x
2
+
C
{\displaystyle \int x^{2}\operatorname {arcsec} ax\,dx={\frac {x^{3}\operatorname {arcsec} ax}{3}}\,-\,{\frac {1}{6\,a^{3}}}\,\operatorname {arctanh} \,{\sqrt {1-{\frac {1}{a^{2}x^{2}}}}}\,-\,{\frac {x^{2}}{6\,a}}{\sqrt {1-{\frac {1}{a^{2}x^{2}}}}}\,+\,C}
∫
x
m
arcsec
a
x
d
x
=
x
m
+
1
arcsec
a
x
m
+
1
−
1
a
(
m
+
1
)
∫
x
m
−
1
1
−
1
a
2
x
2
d
x
(
m
≠
−
1
)
{\displaystyle \int x^{m}\operatorname {arcsec} ax\,dx={\frac {x^{m+1}\operatorname {arcsec} ax}{m+1}}\,-\,{\frac {1}{a\,(m+1)}}\int {\frac {x^{m-1}}{\sqrt {1-{\frac {1}{a^{2}x^{2}}}}}}\,dx\quad (m\neq -1)}
逆余割関数の積分
編集
∫
arccsc
x
d
x
=
x
arccsc
x
+
ln
|
x
+
x
2
−
1
|
+
C
=
x
arccsc
x
+
arccosh
(
x
)
+
C
{\displaystyle \int \operatorname {arccsc} x\,dx=x\operatorname {arccsc} x\,+\,\ln \left|x+{\sqrt {x^{2}-1}}\right|\,+\,C=x\operatorname {arccsc} x\,+\,\operatorname {arccosh} (x)\,+\,C}
∫
arccsc
a
x
d
x
=
x
arccsc
a
x
+
1
a
arctanh
1
−
1
a
2
x
2
+
C
{\displaystyle \int \operatorname {arccsc} ax\,dx=x\operatorname {arccsc} ax+{\frac {1}{a}}\,\operatorname {arctanh} \,{\sqrt {1-{\frac {1}{a^{2}x^{2}}}}}+C}
∫
x
arccsc
a
x
d
x
=
x
2
arccsc
a
x
2
+
x
2
a
1
−
1
a
2
x
2
+
C
{\displaystyle \int x\operatorname {arccsc} ax\,dx={\frac {x^{2}\operatorname {arccsc} ax}{2}}+{\frac {x}{2\,a}}{\sqrt {1-{\frac {1}{a^{2}x^{2}}}}}+C}
∫
x
2
arccsc
a
x
d
x
=
x
3
arccsc
a
x
3
+
1
6
a
3
arctanh
1
−
1
a
2
x
2
+
x
2
6
a
1
−
1
a
2
x
2
+
C
{\displaystyle \int x^{2}\operatorname {arccsc} ax\,dx={\frac {x^{3}\operatorname {arccsc} ax}{3}}\,+\,{\frac {1}{6\,a^{3}}}\,\operatorname {arctanh} \,{\sqrt {1-{\frac {1}{a^{2}x^{2}}}}}\,+\,{\frac {x^{2}}{6\,a}}{\sqrt {1-{\frac {1}{a^{2}x^{2}}}}}\,+\,C}
∫
x
m
arccsc
a
x
d
x
=
x
m
+
1
arccsc
a
x
m
+
1
+
1
a
(
m
+
1
)
∫
x
m
−
1
1
−
1
a
2
x
2
d
x
(
m
≠
−
1
)
{\displaystyle \int x^{m}\operatorname {arccsc} ax\,dx={\frac {x^{m+1}\operatorname {arccsc} ax}{m+1}}\,+\,{\frac {1}{a\,(m+1)}}\int {\frac {x^{m-1}}{\sqrt {1-{\frac {1}{a^{2}x^{2}}}}}}\,dx\quad (m\neq -1)}