数学において、一般化された超幾何関数(いっぱんかされたちょうきかかんすう、英: generalized hypergeometric function)は、一般に
の形式で表される級数である[1]。ただし、
はポッホハマー記号である。
- 型超幾何級数
古典的にはガウスの超幾何関数
を単に超幾何級数という[3][4]。なお、厳密にいうと、右辺の級数が超幾何級数であり、左辺の記号は原点の近傍で絶対収束する冪級数の和とそれから解析接続によって定義される解析関数としての超幾何関数を表すものである。
級数 の連続する項の比が n の有理関数であるとき、これを超幾何級数(hypergeometric series)という[5]。慣習的にはあらかじめ初項を括り出しておき、定義に t0 = 1 も含め正規化する。定義から
-
となる n の多項式 P(n), Q(n) が存在する。
たとえば指数関数のテイラー級数
-
は超幾何級数で、この場合
-
ゆえ P(n) = z, Q(n) = n + 1 となる。
分母分子を一次式の積へ分解することで有理関数を
-
の形に書くことができる。ここで z は分母分子の最高次係数の比である。歴史的な理由により分母の因子 n + 1 を仮定しているが、必要なら分子に同じ因子を掛ければよいので一般性は失わない。以上から級数は
-
の形に書くことができる。この右辺を通常
-
と表記する。
超幾何級数 は、 であれば絶対収束し、 であれば発散する。 の場合は、 であれば絶対収束し、 であれば発散する。 の場合は、 であれば絶対収束し、 であれば発散する。但し、 又は が正でない整数 である場合は、 となって で収束、或いは となって で発散する場合がある。
第 項を とする:
-
公比は
-
であるから、 であれば絶対収束し、 であれば発散する。 の場合は、
-
であるから、
-
であり、
-
である。従って、ラーベの判定法 (Raabe's test[6][7])により、 であれば絶対収束し、 であれば発散する。
代数関数、指数関数、三角関数
-
正弦積分、余弦積分、指数積分
-