数学線型代数学函数解析および関連する分野における準ノルム(じゅんノルム、: quasinorm)とは、ノルムと類する概念であり、三角不等式を除いたノルムの公理を満たす。また三角不等式の成立は、ある に対する不等式

の成立に置き換えられる。半ノルム擬ノルムとは異なる概念である(それらでは正定値性のみが満たされない)。

関連する概念

編集

関連する準ノルムを備えるベクトル空間準ノルムベクトル空間(quasinormed vector space)と呼ばれる。

完備準ノルムベクトル空間は準バナッハ空間(quasi-Banach space)と呼ばれる。

準ノルム空間  準ノルム多元環(quasinormed algebra)であるとは、ベクトル空間 A多元環であり、すべての   に対して次を満たすある定数 K > 0 が存在することをいう。

 

完備準ノルム多元環は準バナッハ環(quasi-Banach algebra)と呼ばれる。

関連項目

編集

参考文献

編集
  • Aull, Charles E.; Robert Lowen (2001). Handbook of the History of General Topology. Springer. ISBN 0-7923-6970-X 
  • Conway, John B. (1990). A Course in Functional Analysis. Springer. ISBN 0-387-97245-5 
  • Nikolʹskiĭ, Nikolaĭ Kapitonovich (1992). Functional Analysis I: Linear Functional Analysis. Encyclopaedia of Mathematical Sciences. 19. Springer. ISBN 3-540-50584-9 
  • Swartz, Charles (1992). An Introduction to Functional Analysis. CRC Press. ISBN 0-8247-8643-2