2階のテンソル量である応力σとひずみεに対して、弾性率Dは4階のテンソル量で表すことができる[4]。
-
- [5]
弾性率はテンソルであるため、物質客観性の原理により座標変換においてσ=Dεの関係を保たねばならない。座標系O-x1x2x3からO-x '1x '2x '3へ変換するとき、弾性率テンソルの成分は
-
と変換される[6]。ここでlipは、xi軸とx'p軸の方向余弦である。
弾性率テンソルは81(= 34)個の成分を持つが、応力テンソルσとひずみテンソルεは対称性、すなわち
-
によりそれぞれ独立な6成分を持つので、弾性率テンソルDも
-
の性質を持ち、独立な成分は36(= 62)個となる。さらに単位体積あたりの弾性ひずみエネルギー
-
を用いて弾性率が
-
と表せることから
-
が成り立つため、最終的に弾性率テンソルDの独立な成分は21(= 6×(6+1)/2)個となる[6]。
一般に、等方性物質(無定形ポリマー、非晶性・無配向ポリマーなど)では3種の弾性率(引張弾性率 、剪断弾性率 、体積弾性率 )の関係について次式が成り立つ[3]。
-
ここで、 とは、縦方向のひずみと横方向のひずみとの比(ポアソン比)である。結晶性ポリマー、繊維、フィルム、繊維充填複合材料、一般の射出成形物などは等方性物質ではない。高分子鎖、充填繊維、結晶相などに配向を持ち、その程度は内部と表面で異なる。これ異方性物質は、独立した2つ以上の弾性率を持つ[7]。
材料が等方均質弾性材料とすると、弾性率テンソルD の独立な成分は2個まで絞られ[4]、次式のように書ける[8]。
-
ここでδはクロネッカーのデルタである。
この場合、ヤング率E 、ポアソン比ν、体積弾性率K 、剛性率G 、ラメの第一定数λの5つの弾性率はそれぞれ、2つを用いて残りの3つを表すことができる。その関係を下に示す。ここで、α = (E2 + 9λ2 + 2E λ)1/2 とする。
等方均質弾性体における各弾性率間の変換式
|
|
(ヤング率) |
(ポアソン比) |
(体積弾性率) |
(剛性率) |
(ラメの第一定数)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
粘弾性体に対しては、弾性率は複素数で表される。複素弾性率の実部は貯蔵弾性率、虚部は損失弾性率と呼ばれる。