主イデアル: principal ideal)、あるいは単項イデアルとは、 R の単一の元 a により生成された Rイデアル I のことを言う。(要するに、単元生成されたイデアルを主イデアルと言う。)

定義

編集
  • R左主イデアル (left principal ideal) は、Ra = {ra : rR} の形の部分集合
  • R右主イデアル (right principal ideal) は、aR = {ar : rR} の形の部分集合
  • 両側主イデアル (two-sided principal ideal) は、RaR = {r1as1 + ... + rnasn : r1, s1, ..., rn, snR} の形の部分集合

R可換環であれば、上の3つの定義はみな同じになる。この場合は、a で生成されるイデアルを (a) と記すのが一般的である。

主イデアルでないイデアルの例

編集

全てのイデアルが、主イデアルというわけではない。

例えば、2つの変数 x, y の、複素数を係数とする全ての多項式からなる環 C[x, y] を考える。xy で生成されたイデアル (x, y) は、定数項が 0 となるような C[x, y] の多項式全てから構成されるが、主イデアルではない。このことを見るために、p(x, y) の生成元であると仮定すると、xy は両方とも p により割り切れることになるが、このことは p が 0 でない定数でない限り不可能である。しかし 0 は (x, y) の中の唯一の定数であり、従って矛盾する

関連する定義

編集

全てのイデアルが主イデアルであるような環を、主イデアル環 (principal ideal ring) と言う。主イデアル整域 (PID) とは、全てのイデアルが主イデアルとなるような整域を言う。任意の主イデアル整域は一意分解整域 (UFD) であり、整数における一意分解(いわゆる、算術の基本定理)の普通の証明が任意の主イデアル整域で成り立つ。

性質

編集

任意のユークリッド整域は主イデアル整域であり、最大公約数の計算に使われるアルゴリズムを、任意のイデアルの生成子を見つけることに使うことができる。さらに一般的には、可換環のどの2つの主イデアルも、イデアルの乗法の意味で最大公約数を持っている。そのため、主イデアル整域では、環の元の最大公約数を、単元による積を除いて、定義できる。すなわち、gcd(a, b) をイデアル (a, b) の任意の生成子として定義する。

デデキント整域 R に対し、R の 主イデアルではないイデアル I が与えられたとき、R の拡大 S であって、I により生成される S のイデアルが主イデアルとなる(大ざっぱにいえば、IS主イデアルとなる)ようなものが存在するかと問うこともできる。この問題は、数論で代数的整数の環の研究の関連で発生し、高木貞治エミール・アルティン (Emil Artin)、ダフィット・ヒルベルト (David Hilbert) やその他多くの数学者による類体論の発展を導いた。

類体論の主イデアル定理英語版は、任意の整数環 R (つまり、ある代数体整数環)に対し、それを含むような整数環 S であって、R全てのイデアルが S の主イデアルとなるようなものが存在すると言う定理である。この定理において、SRヒルベルト類体の整数環とすることができる。ヒルベルト類体は、R の分数体の最大の不分岐アーベル拡大(つまりガロア群が可換ガロア拡大)であり、これは R によって一意的に決定される。

クルルの主イデアル定理は、Rネーター環で、IR の真の主イデアルであれば、I高さは高々 1 であるという定理である。

関連項目

編集

参考文献

編集
  • Joseph A. Gallian (2004). Contemporary Abstract Algebra. Houghton Mifflin. pp. 262. ISBN 978-0-618-51471-7