数学において、ルジャンドルのカイ関数(Legendre chi function)とは、テイラー展開が以下により与えられた、ディリクレ級数でもある特殊関数である。

上の式は多重対数関数のディリクレ級数と似ている。事実、以下のような多重対数関数を用いた表現が可能である。

フルヴィッツのゼータ関数の変数sでの離散フーリエ変換は、ルジャンドルのカイ関数である。

ルジャンドルカイ関数は、レルヒのゼータ関数英語版の特殊なケースである。そのため、次の式でも与えられる。

恒等式

編集
 
 

関係する積分

編集
 
 
 
 

参考文献

編集
  • Weisstein, Eric W. "Legendre's Chi Function". mathworld.wolfram.com (英語).
  • Djurdje Cvijović and Jacek Klinowski, "Values of the Legendre chi and Hurwitz zeta functions at rational arguments", Mathematics of Computation 68 (1999), 1623-1630.
  •  Djurdje Cvijović (2006年). “Integral representations of the Legendre chi function”. Elsevier. December 15, 2006閲覧。
  • Mathematics Stack Exchange