スキスマ
音楽において、スキスマ(ラテン語: SchismaあるいはSkhismaとも)はピタゴラスコンマ(531441:524288)とシントニックコンマ(81:80)の差の音程であり、32805:32768に等しく[1][2]、約1.9537セントである( 再生 )。これは以下のようにも定義できる。
- 8つの純正完全五度と1つの純正長三度をあわせたものと5オクターブの差
- 大リンマ (135:128) とピタゴラスリンマ (256:243) の差
- シントニックコンマとディアスキスマ (2048:2025) の差
「Schisma」は分裂を意味するギリシア語の単語 "Σχίσμα" のラテン語表記であり、音楽用語としては6世紀の初めにボエティウスの『音楽綱要』(De institutione musica)第3巻で導入された。ボエティウスはディアスキスマも初めて定義した。
アンドレアス・ヴェルクマイスターはピタゴラスコンマの12乗根、あるいは純正五度と平均律五度(700セント)の差に等しいものとしてgradを定義した[3]。この値、1.955セントは886:885の比によって近似できる[4]。この音程もスキスマと呼ばれることがある。
gradとスキスマの差が非常に小さいため、有理数比による平均律の近似が五度を1 grad ではなく1スキスマ低くすることによって実現できる。この事実はバッハの弟子のヨハン・キルンベルガーによって初めて記された。12のキルンベルガーの五度(16384:10935)は7オクターブよりも大きい。そのわずかな差(2161 3−84 5−12、0.01536セント)が「キルンベルガーのアトム」である。
スキスマを調整することでスキスマ音律が得られる。
デカルトの用法では「スキスマ」に完全四度を加えると27:20 (519.55セント)、完全五度からスキスマを引くと40:27 (680.45セント)、長六度にスキスマを加えると27:16 (= 81:48 = 905.87セント)[5] 。この定義による「スキスマ」はシントニックコンマ (81:80) のことである。
出典
編集- ^ Benson, Dave (2006). Music: A Mathematical Offering, p.171. ISBN 0-521-85387-7.
- ^ Apel, Willi (1961). Harvard Dictionary of Music, p.188. ISBN 0-674-37501-7.
- ^ "Logarithmic Interval Measures", Huygens-Fokker.org. Accessed 2015-06-06.
- ^ Monzo, Joe (2005). "Grad", TonalSoft.com. Accessed 2015-06-06.
- ^ Ruth Katz, Carl Dahlhaus (1987). Contemplating Music: Substance, p.523. ISBN 0-918728-60-6.
外部リンク
編集- Joe Monzo, Kami Rousseau (2005). "Septimal-Comma", Tonalsoft: Encyclopedia of Microtonal Music Theory. Accessed 2015-06-06.
- "List of Intervals", Huygens-Fokker.org. Accessed 2015-06-06.