アンサンブルカルマンフィルタ
アンサンブルカルマンフィルタ(Ensemble Kalman Filter;EnKF)とは、逐次型データ同化手法の一つである。シミュレーションモデル内の状態を表す確率変数について、その分布を実現値集合(アンサンブルと称す)によって保持し、観測を得るごとに、観測モデルをもとにしたカルマンフィルターによる推定により、2次モーメントまでが一致するよう、アンサンブルを修正することを繰り返す方法である。
概略
編集まず、時刻kにおけるシミュレーションモデル(状態方程式)は以下である。
ここで、 は状態ベクトル、 はシステムノイズである。
また、観測モデル(観測方程式)は、以下である。
ここで、 は観測ベクトル、 は観測ノイズである。
本項目では、以下の線形の観測モデルを考える。
ここでN個のアンサンブル を考えたとき、条件付き分布pを以下のように 関数を用いて近似する。
アンサンブルカルマンフィルタの解析は、予測(prediction)、濾波(filtering)および平滑化(smoothing)の三つの推定問題に分類することができる。以下に三つの問題を示す。
予測
編集アンサンブルメンバー をシミュレーションモデルに基づいて更新し、予測分布のアンサンブルを得る。すなわち、以下の式が得られる。
濾波
編集次に、以下のカルマンゲインより、アンサンブルメンバーを得る。
平滑化
編集以下のアンサンブルメンバーを得る。ここで、 はカルマンゲインに相当する。
参考文献
編集- 中村和幸、上野玄太、樋口知之;データ同化:その概念と計算アルゴリズム、統計数理、第53巻、第2号、pp.211-229、2005.
- 三好建正;アンサンブル・カルマンフィルタ‐データ同化とアンサンブル予報の接点‐、天気、Vol.52、No.2、pp.93-104、2005.
- Evansen, G.: The ensemble Kalman filter : theoretical formulation and practical implementation, Ocean Dynamics, 53, pp.343-367, 2003.
- Hamill, T.M.: Ensemble-based atmospheric data assimilation, A tutorial, NOAA-CIRES Climate Diagnostics Center, pp.1-46, 2003.